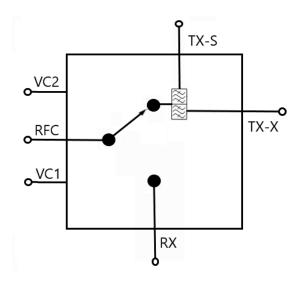
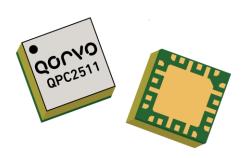


Product Overview


Qorvo's QPC2511 is a Single-Pole, Triple—Throw (SP3T) switch fabricated on Qorvo's QGaN15 0.15um GaN on SiC production process.

The throws are specifically designed for high frequency and RF power (30W) S and X band transmission linear power handling. The remaining throw is a wide-band (11+ GHz) low-pass receive path that can operate linear up to 10 W. This switch maintains low insertion loss (approximately 1.5 dB in X-band), 20 dB isolation, making it ideal for high frequency and RF power switching applications across both defense and commercial platforms.


QPC2511 is offered in a 4 x 4 mm Air Cavity Laminate package.

Lead-free and RoHS compliant.

Functional Block Diagram

2.0 - 11.0 GHz 30W GaN SP3T Switch

4mm x 4mm 24 Lead Air Cavity Laminate

Key Features

- SP3T
- Frequency Range: 2.0 11.0 GHz
- Input Power for Wideband Receive: 10 W
- Input Power for S and X Bands Transmit: 30 W
- Insertion Loss: 1.5 dB Typical
- Isolation: 20 dB Typical
- Switching Speed: < 50 ns
- Control Voltages: 0 V/-30 V
- Package Dimensions: 4 x 4 x 1.48 mm

Performance is typical across frequency. Please reference electrical specification table and data plots for more details.

Applications

- Radar
- Communications
- Electronic Warfare

Ordering Information

Part No.	Description
QPC2511SR	100 Piece 7" Reel
QPC2511TR7	500 Piece 7" Reel
QPC2511EVB03	Evaluation Board

2.0 to 11.0 GHz High Power GaN SP3T Switch

Absolute Maximum Ratings

Parameter	Rating
Control Voltage (Vc)	-40 V
Control Current (I _C)	10.0 mA
Power Dissipation, 85 °C	5 W
Input Power (P _{IN}), Pulsed, 3:1 VSWR, RX Mode, T _{BASE} = 85 °C	40 dBm
Input Power (P _{IN}), Pulsed, 3:1 VSWR, TX Mode, T _{BASE} = 85 °C	45 dBm
Mounting Temperature (30 sec)	260 °C
Storage Temperature	−55 to 150 °C

Exceeding any one or a combination of the Absolute Maximum Rating conditions may cause permanent damage to the device. Extended application of Absolute Maximum Rating conditions to the device may reduce device reliability.

Recommended Operating Conditions

Parameter	Min	Тур.	Max	Units
V _{C1}		0/-30		V
V _{C2}		-30/0		V
Control Voltage Range	-22	-30	_	V
Temperature Range	-40	+25	+85	°C

Electrical specifications are measured at specified test conditions. Specifications are not guaranteed over all recommended operating conditions.

Thermal and Reliability Information

Parameter	Test Conditions	Value	Units
Thermal Resistance (θ _{JC}) ^(1,2)	TBASE = 85 °C, Vc1 = -30 V, Vc2 = 0 V, TX Mode	4.45	°C/W
Channel Temperature (T _{CH}) (1,2)	Pulsed RF: PW = 300µ, DC = 25% Freq. = 3.0 GHz, P _{IN} = 45 dBm, P _{DISS} = 1.76 W	93	°C
Thermal Resistance (θ _{JC}) ^(1,2)	$T_{BASE} = 85 ^{\circ}\text{C}, V_{C1} = -30 ^{\circ}\text{V}, V_{C2} = 0 ^{\circ}\text{V}, TX ^{\circ}\text{Mode}$	5.0	°C/W
Channel Temperature (T _{CH}) ^(1,2)	Pulsed RF: PW = 300µ, DC = 25% Freq. = 10.0 GHz, P _{IN} = 45 dBm, P _{DISS} = 2.0 W	95	°C

Notes:

- 1. Measured to the back of the package at (85 °C)
- 2. Refer to the following document: Gan Device Channel Temperature, Thermal Resistance, and Reliability Estimates

Electrical Specifications (RX Path)

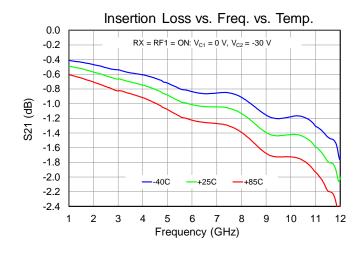
Test conditions unless otherwise noted: $25 \,^{\circ}$ C, $V_{C1} = 0 \,^{\circ}$ V, $V_{C2} = -30 \,^{\circ}$ V. $P_{IN} = 40 \,^{\circ}$ dBm, Pulsed RF: $PW = 300 \,^{\circ}$ us; DC = 25%

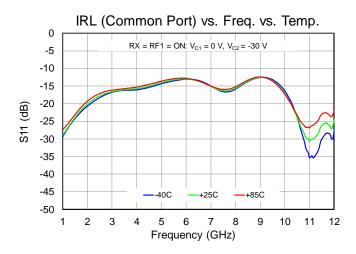
Parameter	Conditions	Min	Тур.	Max	Units	
Operational Frequency Range		2.0	_	11	GHz	
	Frequency = 3.0 GHz	_	0.73	_		
Insertion Loss (On-State)	Frequency = 3.5 GHz	_	0.86	_		
$P_{IN} = 40 \text{ dBm},$ Pulsed RF:	Frequency = 9.0 GHz	_	1.58	_	dB	
PW = 300us; DC = 25%	Frequency = 10.5 GHz	_	1.60	_		
	Frequency = 11.0 GHz	_	1.82	_		
	Frequency = 3.0 GHz	_	17	_		
Input Return Loss (On-State)	Frequency = 3.5 GHz	_	16	_		
Common Port RL	Frequency = 9.0 GHz	_	13	_	dB	
(Small Signal)	Frequency = 10.5 GHz	_	24	_		
	Frequency = 11.0 GHz	_	30	_		
	Frequency = 3.0 GHz	_	18	_		
Output Return Loss (On-State)	Frequency = 3.5 GHz	_	17	_	dB	
Switched Port RL	Frequency = 9.0 GHz	_	13	_		
(Small Signal)	Frequency = 10.5 GHz	_	25	_		
	Frequency = 11.0 GHz	_	30	_		
Isolation TX-S (Off-State)	Frequency = 3.0 GHz	_	37	_	dB	
(Small Signal)	Frequency = 3.5 GHz	_	36	_	ив	
Isolation TX-X (Off-State) (Small Signal)	Frequency = 9.0 GHz	_	23	_	dB	
	Frequency = 10.5 GHz	_	20	_		
(5	Frequency = 11.0 GHz	_	19	_		
Switching Speed			<50		nS	
Insertion Loss Temperature Coe	fficient	_	-0.005		dB/°C	

Electrical Specifications (TX-X Path)

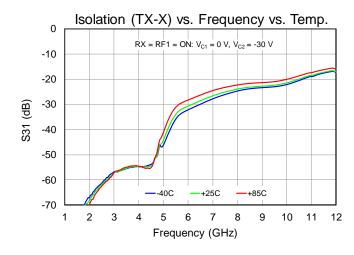
Test conditions unless otherwise noted: $25 \,^{\circ}$ C, $V_{C1} = -30 \,\text{V}$, $V_{C2} = 0 \,\text{V}$. $P_{IN} = 45 \,\text{dBm}$, Pulsed RF: PW = 300 us; DC = 25%

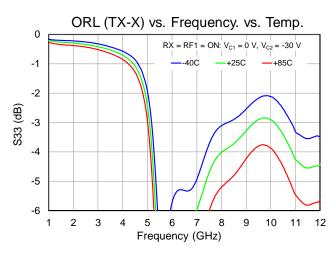
Parameter	Conditions	Min	Тур.	Max	Units	
Operational Frequency Range		8.0	_	11.0	GHz	
Insertion Loss (On State)	Frequency = 8.0 GHz	_	1.42	_		
Insertion Loss (On-State) $P_{IN} = 45 \text{ dBm},$	Frequency = 9.0 GHz	_	1.43	_	-10	
Pulsed RF:	Frequency = 10.5 GHz	_	1.57	_	- dB	
PW = 300us; DC = 25%	Frequency = 11.0 GHz	_	1.67	_		
	Frequency = 8.0 GHz	_	30	_		
Input Return Loss (On-State)	Frequency = 9.0 GHz	_	20	_	-ID	
Common Port RL (Small Signal)	Frequency = 10.5 GHz	_	18	_	- dB	
, ,	Frequency = 11.0 GHz	_	23	_		
Output Return Loss (On-State)	Frequency = 8.0 GHz	_	29	_		
	Frequency = 9.0 GHz	_	21	_	dB	
Switched Port RL (Small Signal)	Frequency = 10.5 GHz	_	20	_		
,	Frequency = 11.0 GHz	_	34	_		
	Frequency = 9.0 GHz	_	36	_		
Isolation TX-S (Off-State) (Small Signal)	Frequency = 10.5 GHz	_	32	_	-10	
(omaii oignai)	Frequency = 11.0 GHz	_	31	_	dB	
	Frequency = 3.0 GHz	_	39	_		
	Frequency = 3.5 GHz	_	37	_		
Isolation RX (Off-State) (Small Signal)	Frequency = 9.0 GHz	_	27	_	dD	
	Frequency = 10.5 GHz	_	25	_	dB	
	Frequency = 11.0 GHz	_	26	_		
Switching Speed			<50		nS	
Insertion Loss Temperature Coe	fficient	_	-0.003	_	dB/°C	

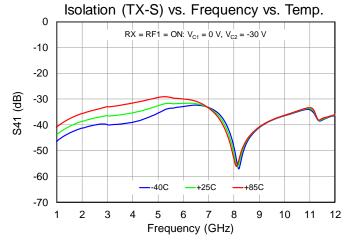

Electrical Specifications (TX-S Path)

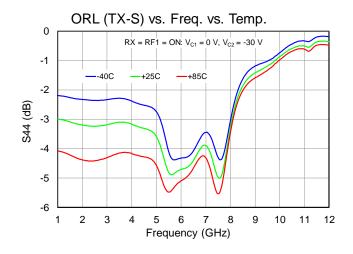

Test conditions unless otherwise noted: $25 \,^{\circ}$ C, $V_{C1} = -30 \,\text{V}$, $V_{C2} = 0 \,\text{V}$. $P_{IN} = 45 \,\text{dBm}$, Pulsed RF:PW = 300 us; DC = 25%

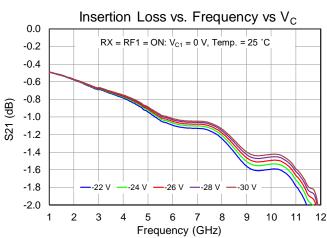
Parameter		Min	Тур.	Max	Units	
Operational Frequency Range		2.0	_	4.0	GHz	
Insertion Loss (On-State)	Frequency = 2.5 GHz	_	1.0	_		
$P_{IN} = 45 \text{ dBm},$	Frequency = 3.0 GHz	_	1.05	_	dB	
Pulsed RF:	Frequency = 3.5 GHz	_	1.14	_	αв	
PW = 300us; DC = 25%	Frequency = 4.0 GHz	_	1.34	_		
	Frequency = 2.5 GHz	_	29	_		
Input Return Loss (On-State) Common Port RL	Frequency = 3.0 GHz	_	33	_	- dB	
(Small Signal)	Frequency = 3.5 GHz	_	25	_	αв	
	Frequency = 4.0 GHz	_	21	_		
Output Return Loss (On-State) Switched Port RL (Small Signal)	Frequency = 2.5 GHz	_	33	_		
	Frequency = 3.0 GHz	_	36	_	dB	
	Frequency = 3.5 GHz	_	26	_		
	Frequency = 4.0 GHz	_	23	_		
	Frequency = 2.5 GHz	_	42	_		
Isolation TX-X (Off-State)	Frequency = 3.0 GHz	_	38	_	-ID	
(Small Signal)	Frequency = 3.5 GHz	_	34	_	dB	
	Frequency = 4.0 GHz	_	35	_		
	Frequency = 3.0 GHz	_	39	_		
	Frequency = 3.5 GHz	_	37	_		
Isolation RX (Off-State) (Small Signal)	Frequency = 9.0 GHz	_	27	_	dB	
	Frequency = 10.5 GHz	_	25	_		
	Frequency = 11.0 GHz	_	26	_		
Switching Speed			< 50		nS	
Insertion Loss Temperature Coe	fficient	_	-0.002	_	dB/°C	

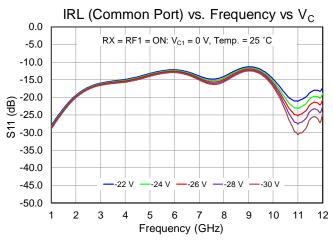


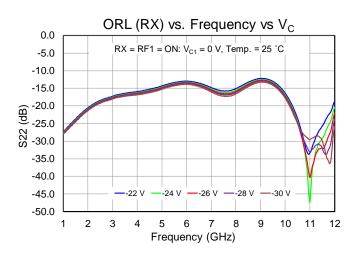

Performance Plots - Small Signal (RX)

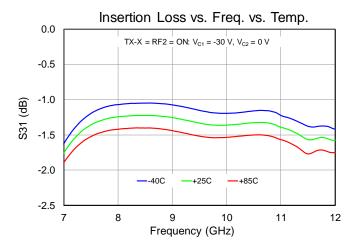


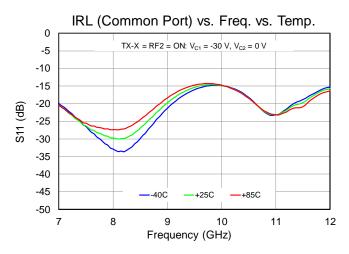


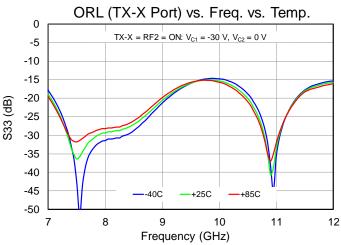


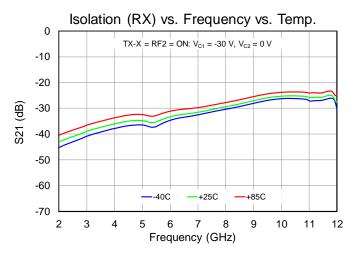


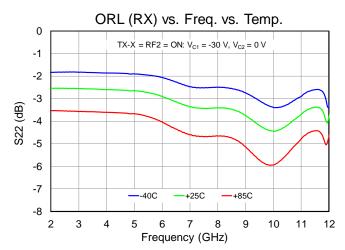

Performance Plots - Small Signal (RX)

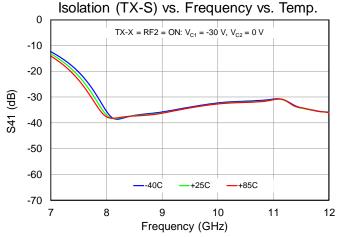


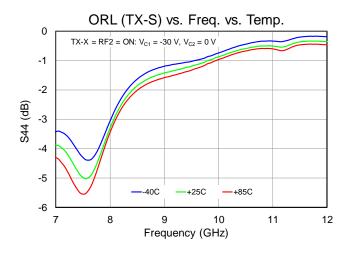


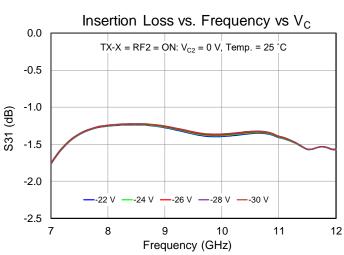


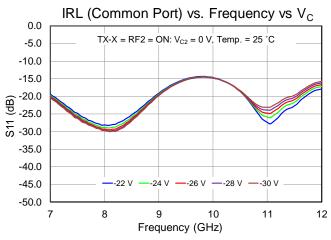


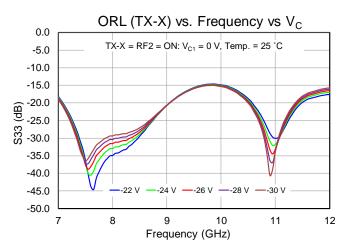

Performance Plots – Small Signal (TX-X)

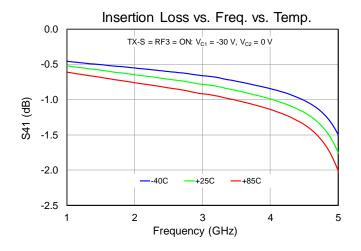


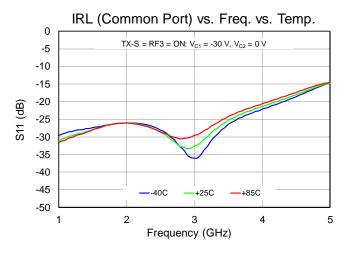


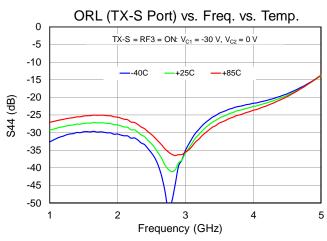


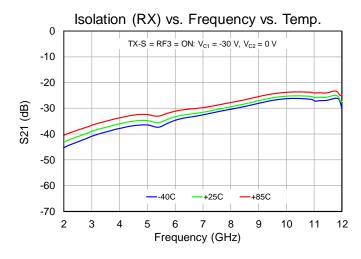


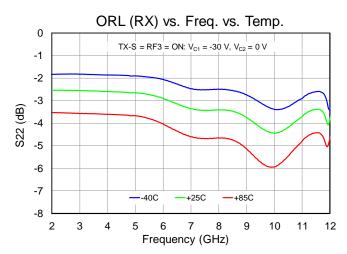

Performance Plots - Small Signal (TX-X)

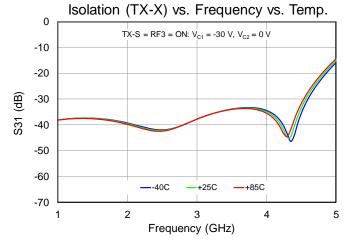


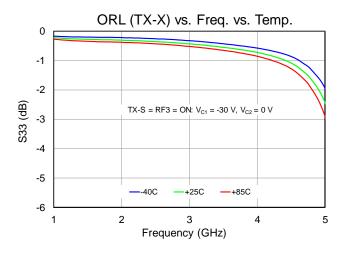


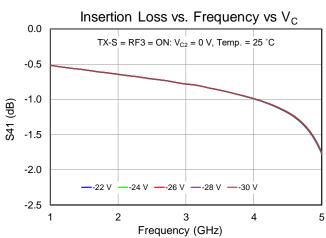


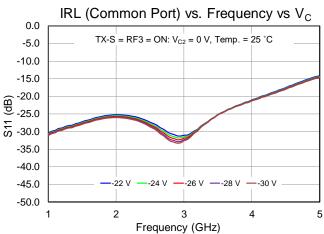


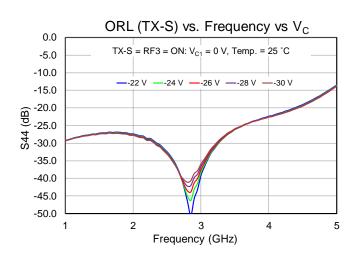

Performance Plots – Small Signal (TX-S)

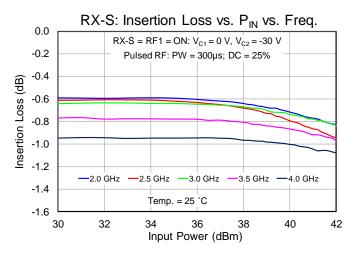


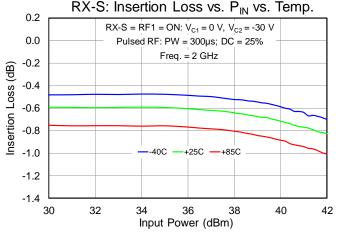


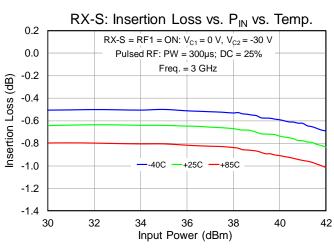


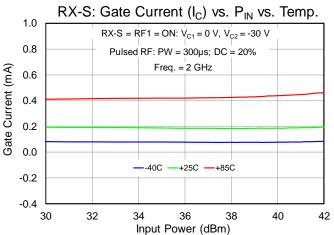


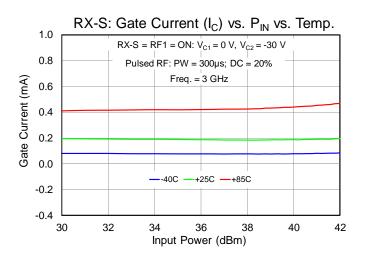

Performance Plots - Small Signal (TX-S)



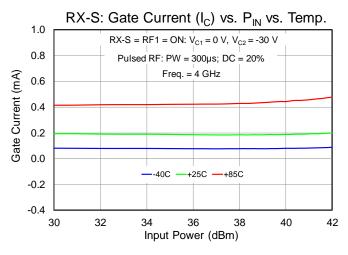


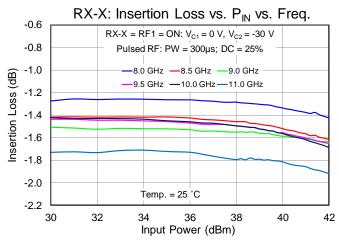


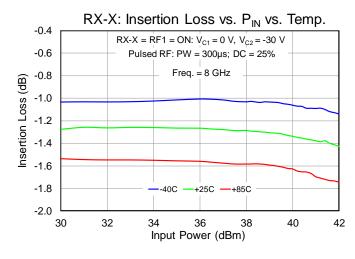


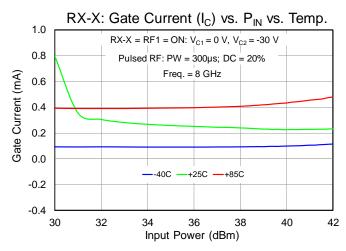

Performance Plots – Large Signal (RX-S)

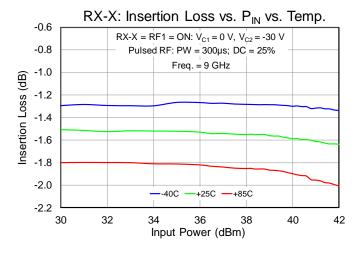


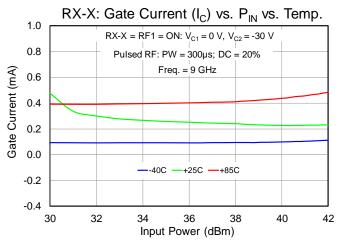


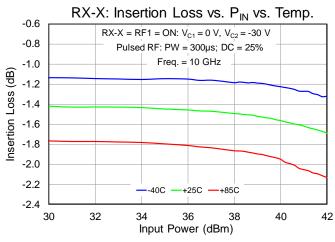


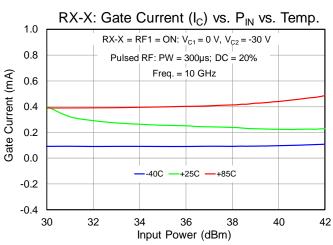


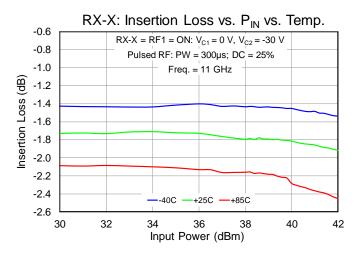

Performance Plots – Large Signal (RX-S / RX-X)

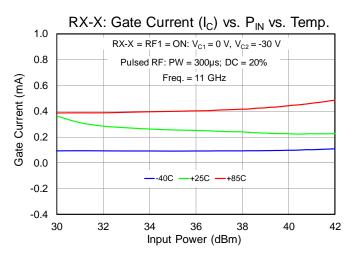


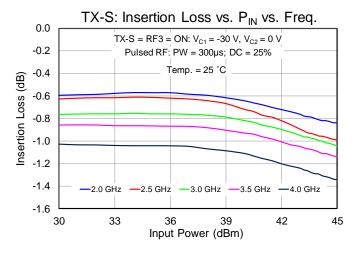


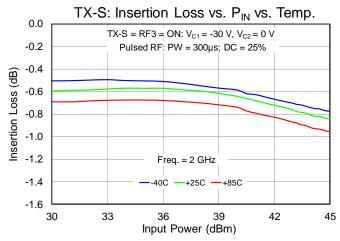


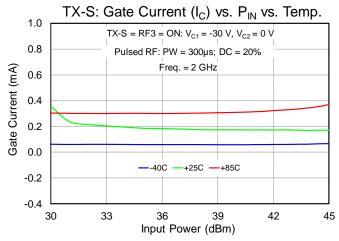

Performance Plots – Large Signal (RX-X)

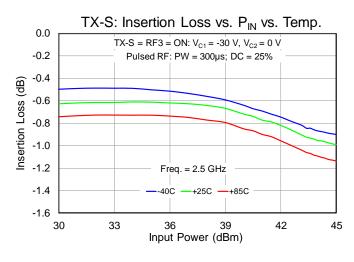

Notes: RFC = Port1; RF1 = Port 2 = RX; RF2 = Port 3 = TX-X; RF3 = Port4 = TX-S. See Logic table on Page 21 for Voltage controls

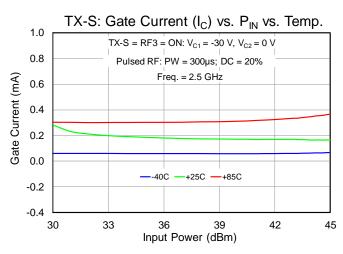


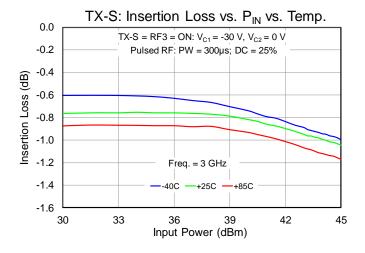


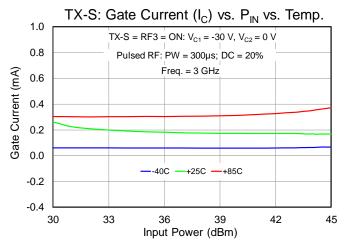


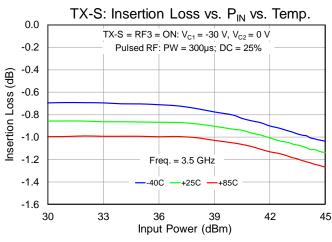

14 of 25

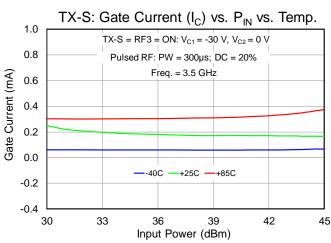


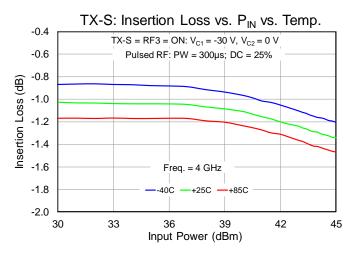

Performance Plots – Large Signal (TX-S)

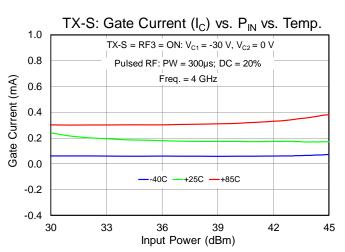


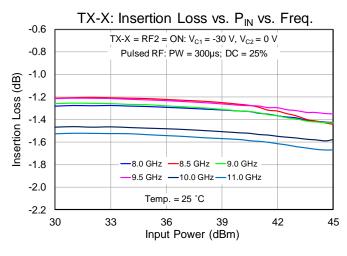


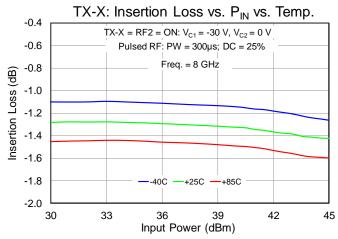


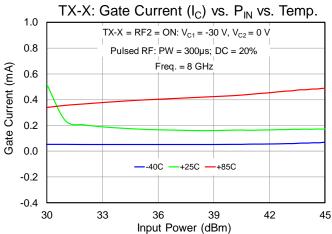


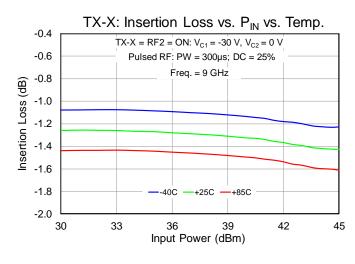

Performance Plots - Large Signal (TX-S)

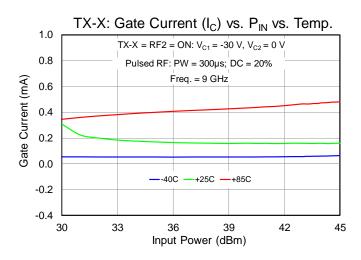


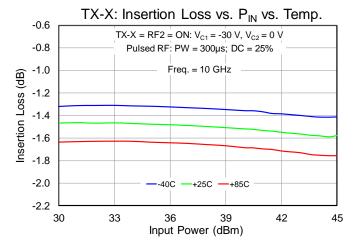


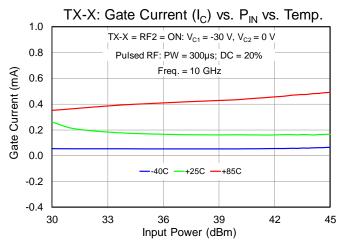


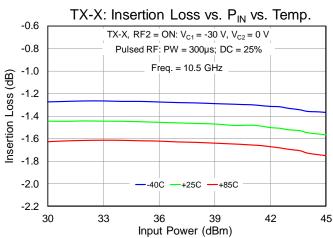


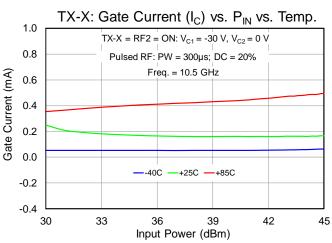


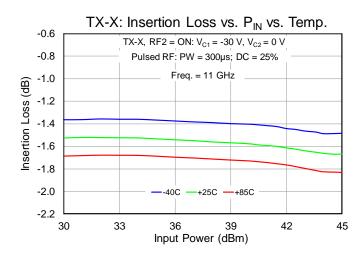

Performance Plots - Large Signal (TX-X)

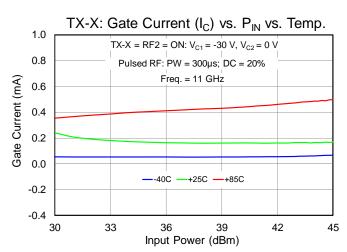


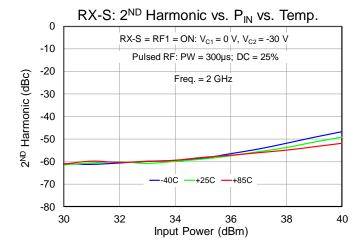


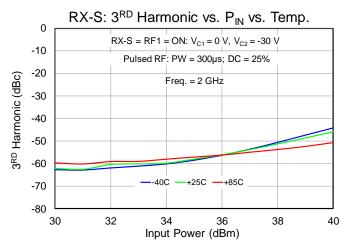


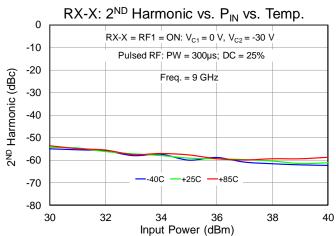


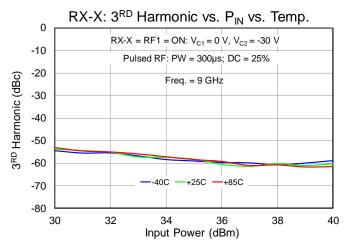

Performance Plots – Large Signal (TX-X)



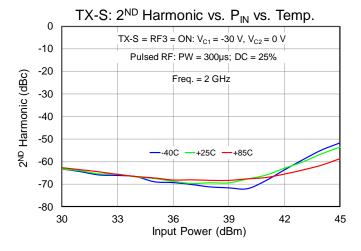


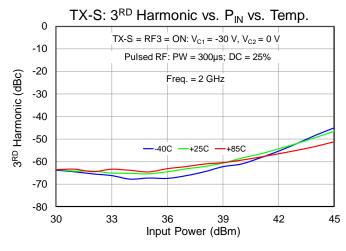


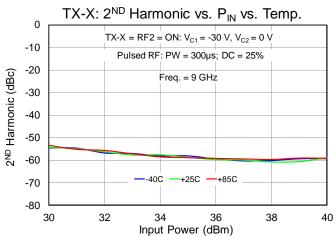


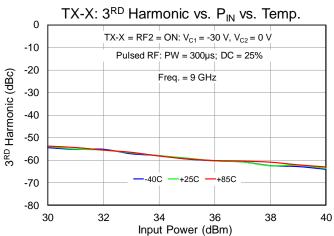


Performance Plots – Harmonics (RX)

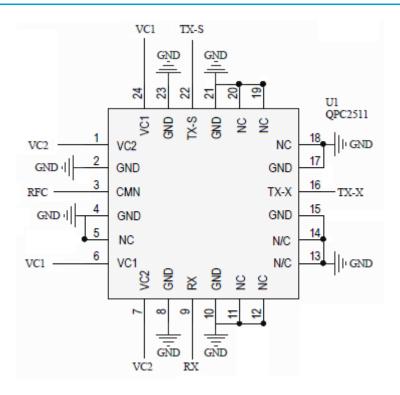








Performance Plots – Harmonics (TX)



Application Circuit

Notes:

- 1. This switch can be configured as a Single Pole, Single Throw (SPST) by terminating two unused RF switched ports with a 50 Ohm load.
- 2. External components are not required.

Bias Up Procedure

1.	V _{C1} or	V _{C2} set to 0 V	(see Logic	Table for RF Path)

2. $V_{\text{C1}}\,\text{or}\,\,V_{\text{C2}}\,\text{set}$ to -30 V (see Logic Table for RF Path)

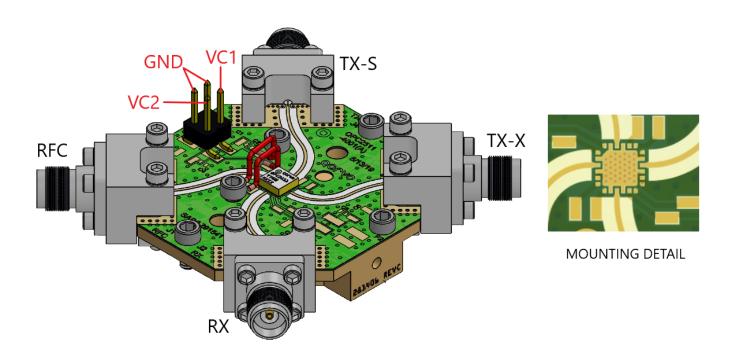
3. Apply RF signal to RF Input

Bias Up Down

1. Turn off RF supply

2. Turn V_{C1} or V_{C2} to 0 V

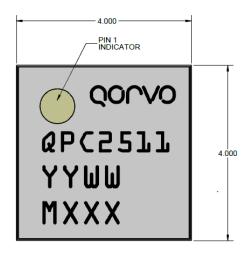
3. Turn V_{C1} or V_{C2} to 0 V

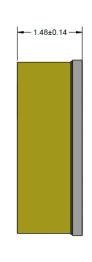

Logic Table (SP3T Truth Table)

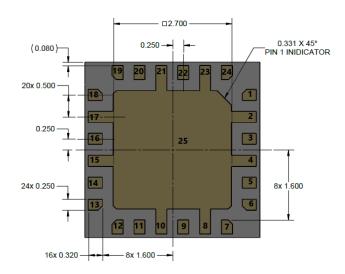
RF Path	Operating Mode	State	V _{C1}	V_{C2}
RFC to RF1 ON	10 W RX	On-State (Insertion Loss), TX-S & TX-X = OFF	1	0
RFC to RF2/RF3 ON	30 W TX, S-Band and X-Band	On-State (Insertion Loss), RX = OFF	0	1

- VC High (1) = 0 V
- VC Low (0) = -22, -24, -26, -28 or -30 V

Evaluation Board (EVB) Assembly Layout.




Notes:


- This switch can be configured as a Single Pole, Single Throw (SPST) by terminating one unused RF switched port with a 50 Ohm load.
- 2. See Logic Table on page 21 for biasing the voltage controls.
- 3. External components are not required

Mechanical Information

Units: millimeters

Tolerances: unless specified

 $x.xx = \pm 0.25$ $x.xxx = \pm 0.100$

Materials:

Package Base: Laminate Package Lid: FR-4

Packaged Exposed Metallization is gold plated

Part Is Epoxy sealed

Marking:

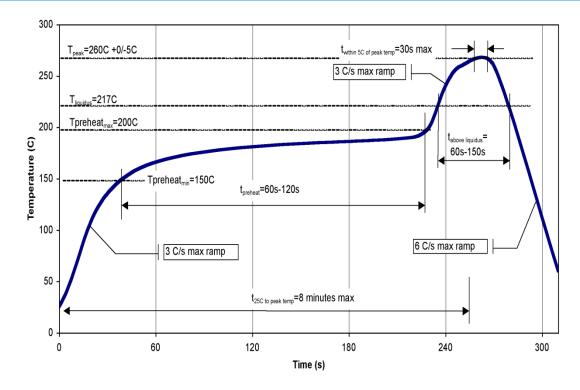
QPC2511: Part number
YY: Part Assembly year
WW: Part Assembly week

MXXX: Batch ID

Pin Description

Pad No.	Symbol	Description
1,7	V _{C2}	Control voltage #2; External components are not required
2, 4, 8, 10, 15, 17, 21, 23	GND	Ground. Connected to GND paddle (pin 25); should be grounded on PCB to improve isolation
3	RFC	RF common port (port1); matched to 50 Ω; DC coupled
5, 11-14, 18-20	N/C	Not connected internally. Recommended to be grounded at EVB level
6, 24	V _{C1}	Control voltage #1; External components are not required
9	RX	RF switched port 2; matched to 50 Ω; DC coupled
16	TX-X	RF switched port 3; matched to 50 Ω; DC coupled
22	TX-S	RF switched port 4; matched to 50 Ω; DC coupled
25	GND	Backside Paddle. Multiple vias should be employed to minimize inductance and thermal resistance.

Assembly Notes


Compatible with lead-free soldering processes with 260°C peak reflow temperature.

This package is air-cavity and non-hermetic, and therefore cannot be subjected to aqueous washing. The use of no-clean solder to avoid washing after soldering is highly recommended.

Contact plating: Au

Solder rework not recommended

Recommended Soldering Profile

Handling Precautions

Parameter	Rating	Standard
ESD-Human Body Model (HBM)	1A	ESDA/JEDEC JS-001-2012
ESD-Charged Device Model (CDM)	C3	ESDA/JEDEC JS-002-2014
MSL-Moisture Sensitivity Level	Level 3	JEDEC standard IPC/JEDEC J-STD-020

Caution! ESD-Sensitive Device

RoHS Compliance

This part is compliant with 2011/65/EU RoHS directive (Restrictions on the Use of Certain Hazardous Substances in Electrical and Electronic Equipment) as amended by Directive 2015/863/EU.

This product also has the following attributes:

- Lead Free
- Antimony Free
- TBBP-A (C₁₅H₁₂Br₄O₂) Free
- PFOS Free
- SVHC Free

Contact Information

For the latest specifications, additional product information, worldwide sales and distribution locations:

Web: <u>www.qorvo.com</u>
Tel: 1-844-890-8163

Email: <u>customer.support@qorvo.</u>com

Important Notice

The information contained herein is believed to be reliable; however, Qorvo makes no warranties regarding the information contained herein and assumes no responsibility or liability whatsoever for the use of the information contained herein. All information contained herein is subject to change without notice. Customers should obtain and verify the latest relevant information before placing orders for Qorvo products. The information contained herein or any use of such information does not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other intellectual property rights, whether with regard to such information itself or anything described by such information. THIS INFORMATION DOES NOT CONSTITUTE A WARRANTY WITH RESPECT TO THE PRODUCTS DESCRIBED HEREIN, AND QORVO HEREBY DISCLAIMS ANY AND ALL WARRANTIES WITH RESPECT TO SUCH PRODUCTS WHETHER EXPRESS OR IMPLIED BY LAW, COURSE OF DEALING, COURSE OF PERFORMANCE, USAGE OF TRADE OR OTHERWISE, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

Without limiting the generality of the foregoing, Qorvo products are not warranted or authorized for use as critical components in medical, life-saving, or life-sustaining applications, or other applications where a failure would reasonably be expected to cause severe personal injury or death.

Copyright 2020 © Qorvo, Inc. | Qorvo is a registered trademark of Qorvo, Inc.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Qorvo:

QPC2511EVB03 QPC2511SR