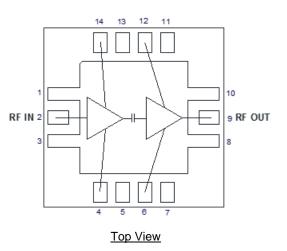
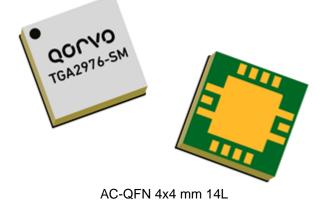
### TGA2976-SM 0.1 – 3.0 GHz 10W GaN Power Amplifier


#### **Product Overview**


Qorvo's TGA2976-SM is a wideband cascode amplifier fabricated on Qorvo's production 0.25um GaN on SiC process. The cascode configuration offers exceptional wideband performance as well as supporting 40 V operation. The TGA2976-SM operates from 0.1 - 3.0 GHz and provides greater than 10 W of saturated output power with greater than 13 dB of large signal gain and greater than 38% power-added efficiency.

The TGA2976-SM is available in a low-cost, surface mount 14 lead 4x4 Air Cavity laminate package. It is ideally suited to support both radar and communication applications across defense and commercial markets as well as electronic warfare. The TGA2976-SM is fully matched to 50  $\Omega$  at both RF ports allowing for simple system integration. DC blocks are required on both RF ports and the drain voltage must be injected through an off chip biastee on the RF output port.

Lead-free and RoHS compliant.

### Functional Block Diagram





#### **Key Features**

- Frequency Range: 0.1 3.0 GHz
- PSAT: >40 dBm at  $P_{IN} = 27$  dBm
- PAE: 48% @ mid-band
- Large Signal Gain: >13 dB
- Small Signal Gain: >20 dB
- Bias:  $V_D = 40 V$ ,  $I_{DQ} = 360 mA$
- Wideband Flat Gain and Power
- Package Dimensions: 4.0 x 4.0 x 1.80 mm

### Applications

- Commercial and military radar
- Communications
- Electronic Warfare

#### **Ordering Information**

| Part No.       | Description                          |
|----------------|--------------------------------------|
| TGA2976-SM     | 0.1-3.0 GHz 10 W GaN Power Amplifier |
| TGA2976-SM EVB | TGA2976-SM Evaluation Board          |

## QOULO

### TGA2976-SM 0.1 – 3.0 GHz 10 W GaN Power Amplifier

#### **Absolute Maximum Ratings**

| Parameter                                                  | Rating            |
|------------------------------------------------------------|-------------------|
| Drain Voltage (V <sub>D</sub> )                            | 80 V              |
| Gate Voltage Range (V <sub>G1</sub> )                      | -8 to 0 V         |
| Gate Voltage Range (V <sub>G2</sub> )                      | 0 to 40 V         |
| Drain Current (I <sub>D</sub> )                            | 760 mA            |
| Gate Current (I <sub>G1</sub> )                            | See plot on pg. 3 |
| Gate Current (I <sub>G2</sub> )                            | See plot on pg. 3 |
| Power Dissipation (P <sub>DISS</sub> ), 85°C               | 28 W              |
| Input Power (P <sub>IN</sub> ), CW, 50 Ω, 85°C,            | 33 dBm            |
| Input Power ( $P_{IN}$ ), CW, VSWR 3:1, $V_D = 40V$ , 85°C | 33 dBm            |
| Mounting Temperature                                       | 260°C             |
| Storage Temperature                                        | -55 to 150°C      |

Exceeding any one or a combination of the Absolute Maximum Rating conditions may cause permanent damage to the device. Extended application of Absolute Maximum Rating conditions to the device may reduce device reliability.

#### **Recommended Operating Conditions**

| Parameter                             | Value          |
|---------------------------------------|----------------|
| Drain Voltage (V <sub>D</sub> )       | 40 V           |
| Drain Current (I <sub>DQ</sub> )      | 360 mA         |
| Gate Voltage Range (V <sub>G1</sub> ) | -2.8 to -2.0 V |
| Gate Voltage (V <sub>G2</sub> )       | +17.7 V (Typ.) |

Electrical specifications are measured at specified test conditions. Specifications are not guaranteed over all recommended operating conditions.

### **Electrical Specifications**

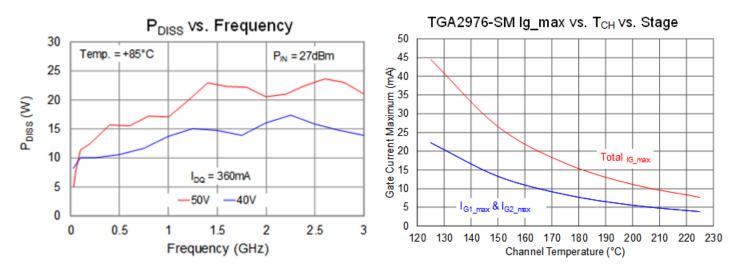
| Parameter                                 | Conditions <sup>(1)</sup>                   | Min | Тур    | Max | Units  |
|-------------------------------------------|---------------------------------------------|-----|--------|-----|--------|
| Operational Frequency Range               |                                             | 0.1 |        | 3.0 | GHz    |
| Small Signal Gain                         |                                             |     | > 20   |     | dB     |
| Input Return Loss                         |                                             |     | > 5    |     | dB     |
| Output Return Loss                        |                                             |     | > 9    |     | dB     |
| Output Power                              | P <sub>IN</sub> = 27 dBm                    |     | > 40   |     | dBm    |
| Power Added Efficiency                    | $P_{IN} = 27 \text{ dBm}, \text{ mid-band}$ |     | 48     |     | %      |
| 3rd Order Intermodulation                 | 120 mA, P <sub>OUT</sub> /tone = 28 dBm     |     | -30    |     | dBc    |
| 5th Order Intermodulation                 | 120 mA, P <sub>OUT</sub> /tone = 28 dBm     |     | -38    |     | dBc    |
| Small Signal Gain Temperature Coefficient |                                             |     | -0.03  |     | dB/°C  |
| Output Power Temperature<br>Coefficient   |                                             |     | -0.009 |     | dBm/°C |
| Recommended Operating Voltage             |                                             |     | 40     | 50  | V      |

Notes:

1. Test conditions unless otherwise noted: 25°C ,  $V_{\rm D}$  = 40 V,  $I_{\rm DQ}$  = 360 mA,  $V_{\rm G1}$  = -2.4 V,  $V_{\rm G2}$  = +17.7 V

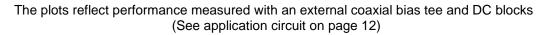
### QONOD

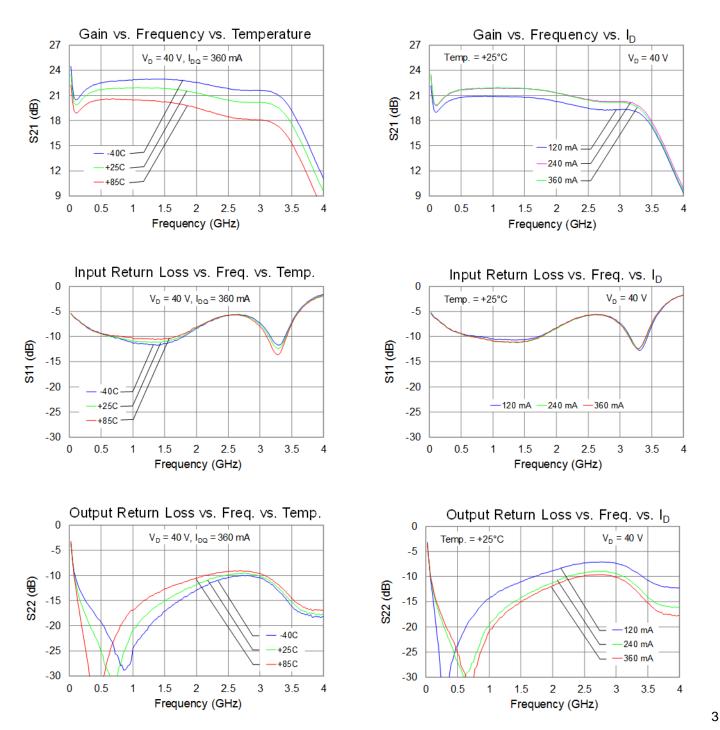
# TGA2976-SM 0.1 – 3.0 GHz 10 W GaN Power Amplifier


#### **Thermal and Reliability Information**

| Parameter                                                    | Test Conditions                                                                                                                                                     | Value | Units |  |
|--------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------|--|
| Thermal Resistance ( $\theta_{JC}$ ) <sup>(1)</sup>          | $T_{\text{base}} = 85 \ ^{\circ}\text{C}, \ V_{\text{D}}{}^{(2)} = 40 \ \text{V} \ (\text{CW}), \ I_{\text{DQ}} = 360 \ \text{mA},$                                 | 3.55  | °C/W  |  |
| Channel Temperature, T <sub>CH</sub> (Under RF) <sup>3</sup> | $I_{D\_Drive} = 655 \text{ mA}, P_{IN} = 27 \text{ dBm}, P_{OUT} = 40 \text{ dBm}, P_{DISS} = 17.4 \text{ W}$                                                       | 146.8 | °C    |  |
| Thermal Resistance ( $\theta_{JC}$ ) <sup>(1)</sup>          | $T_{\text{base}} = 85 \text{ °C}, V_{D}^{(2)} = 50 \text{ V} (\text{CW}), I_{DQ} = 360 \text{ mA},$                                                                 | 3.70  | °C/W  |  |
| Channel Temperature, T <sub>CH</sub> (Under RF) <sup>3</sup> | $\begin{split} I_{D\_Drive} &= 655 \text{ mA},  P_{\text{IN}} = 27 \text{ dBm},  P_{\text{OUT}} = 40 \text{ dBm}, \\ P_{\text{DISS}} &= 23.6 \text{ W} \end{split}$ | 172.3 | °C    |  |

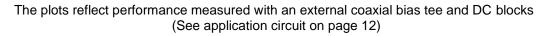
Notes:

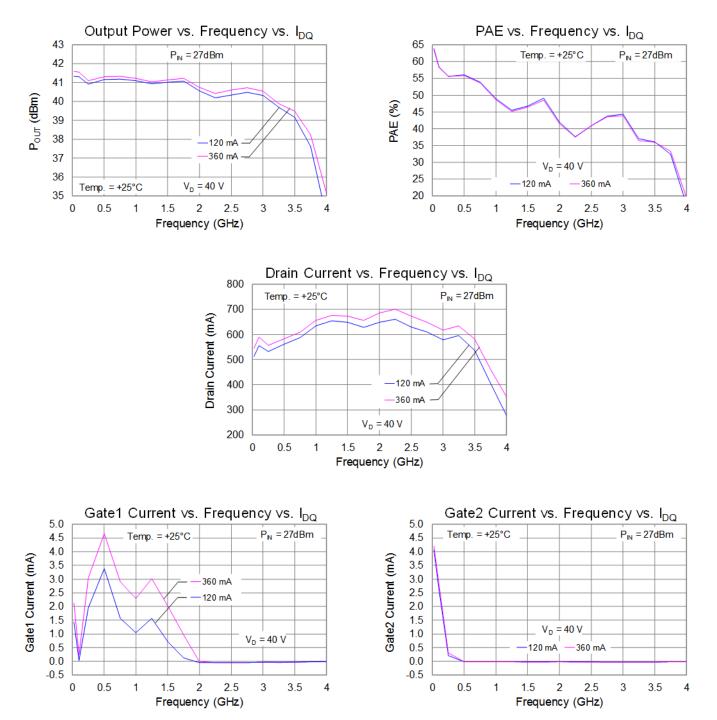

- 1. Thermal resistance measured at back of package.
- 2. The drain voltage for Cascode amplifier transistor is  $\frac{1}{2}$  of V<sub>D</sub>
- 3. IR scan equivalent. Refer to the following document: <u>GaN Device Channel Temperature, Thermal Resistance, and Reliability</u> <u>Estimates</u>


#### **Power Dissipation and Maximum Gate Current**



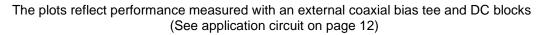
### TGA2976-SM 0.1 – 3.0 GHz 10 W GaN Power Amplifier

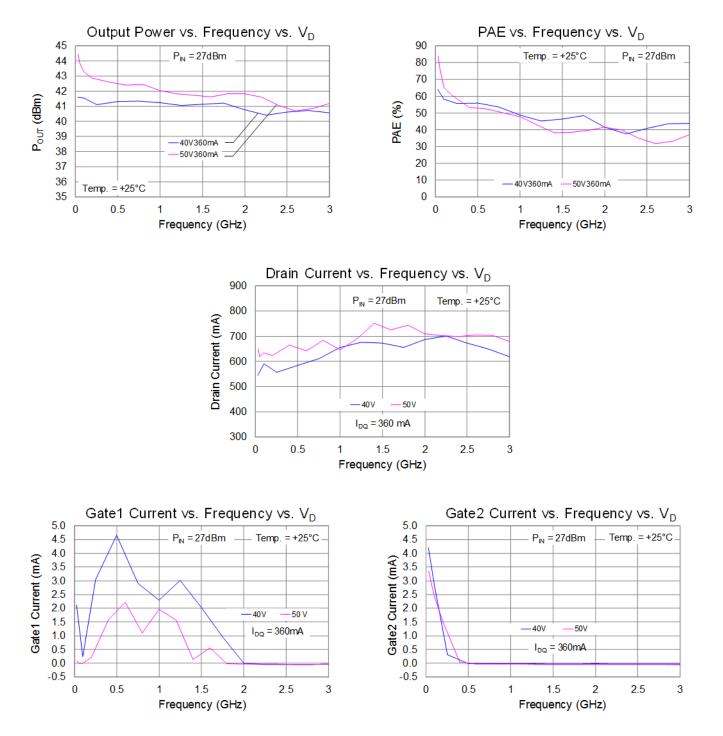

### Performance Plots – Small Signal






### TGA2976-SM 0.1 – 3.0 GHz 10 W GaN Power Amplifier

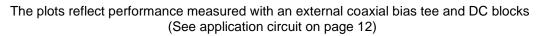

#### **Performance Plots – Small Signal**

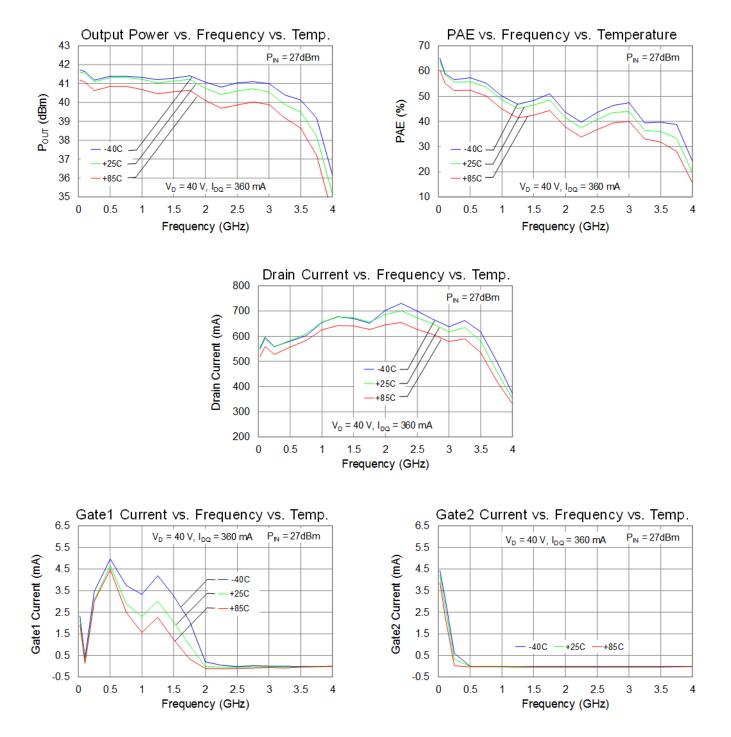





# TGA2976-SM 0.1 – 3.0 GHz 10 W GaN Power Amplifier

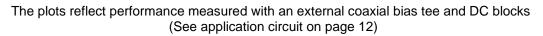
### Performance Plots – Large Signal (CW)

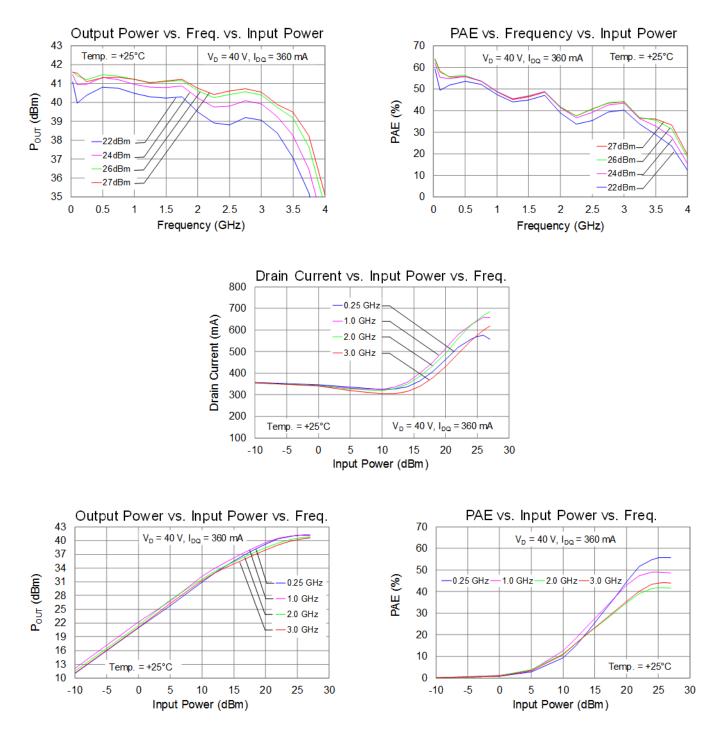



Data Sheet Rev. E, April 2023 | Subject to change without notice

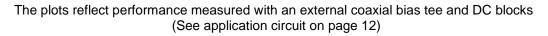
# TGA2976-SM 0.1 – 3.0 GHz 10 W GaN Power Amplifier

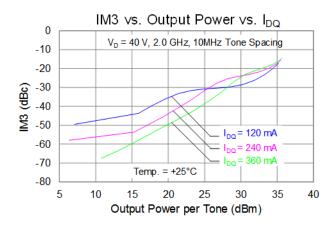

### Performance Plots – Large Signal (CW)

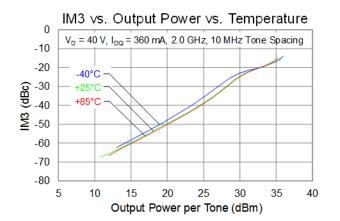


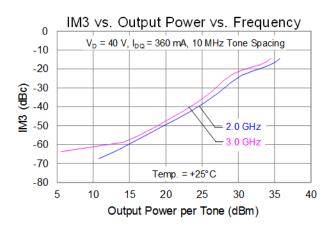


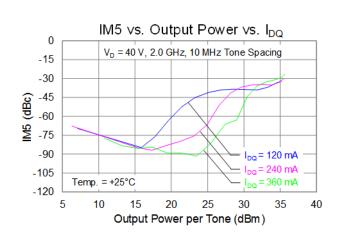

# TGA2976-SM 0.1 – 3.0 GHz 10 W GaN Power Amplifier


#### Performance Plots – Large Signal (CW)

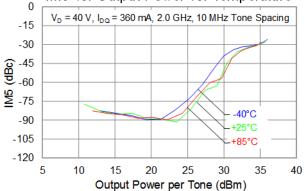


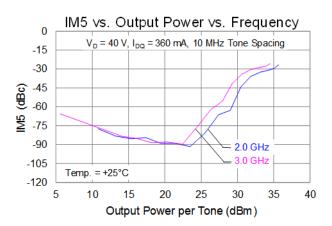





### TGA2976-SM 0.1 – 3.0 GHz 10 W GaN Power Amplifier


#### **Performance Plots – Linearity**

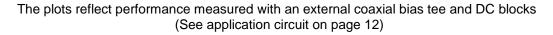


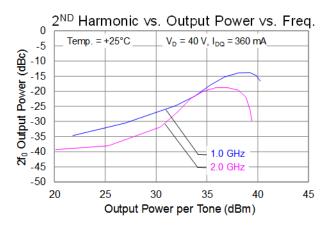


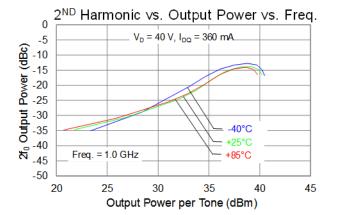



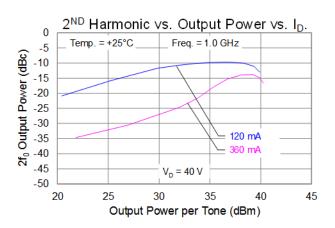


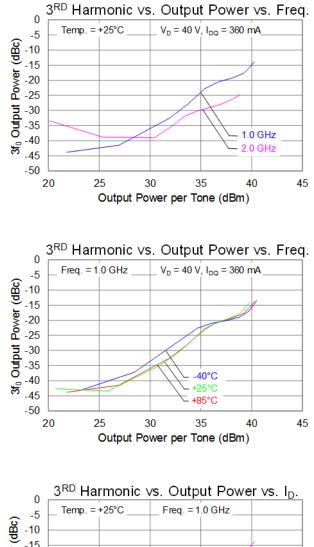


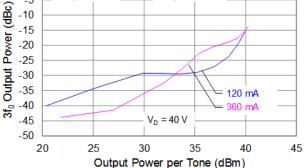


IM5 vs. Output Power vs. Temperature





### TGA2976-SM 0.1 – 3.0 GHz 10 W GaN Power Amplifier

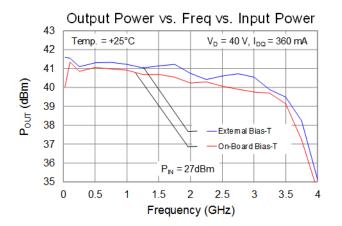

#### **Performance Plots – Linearity**

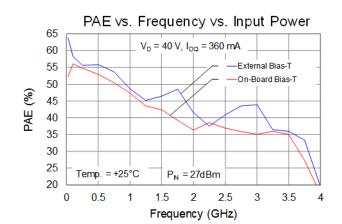








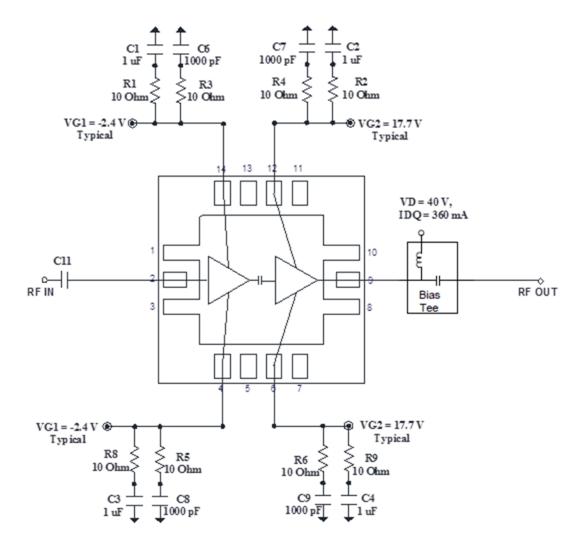




#### TGA2976-SM 0.1 – 3.0 GHz 10 W GaN Power Amplifier

#### Performance Plots – Large Signal (CW), On–board vs. External Bias–T

The plots below reflect performance measured between external bias tee and on-board bias tee (See application circuit on page 12 and 14)






### QONOD

### TGA2976-SM 0.1 – 3.0 GHz 10 W GaN Power Amplifier

#### Application Circuit (Coaxial Input DC Block and Coaxial Output Bias–T)

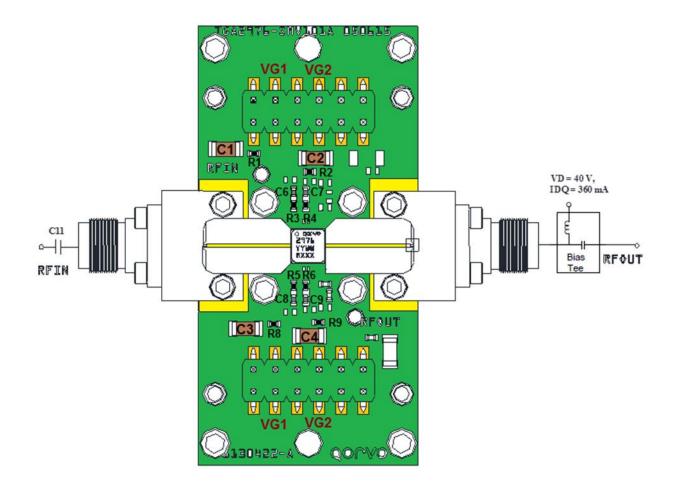


#### Notes:

- 1. V<sub>G1</sub> & V<sub>G2</sub> can be biased from either side (Top or Bottom.)
- 2. Coaxial input DC block (C11) is used for input port (RF In.)
- 3. External wide bandwidth Bias-Tee is used for output port (RF Out). V<sub>D</sub> is applied through the output Bias-Tee.

#### **Bias-Up Procedure**

- 1. Set I<sub>D</sub> limit to 755 mA, I<sub>G1 &</sub> I<sub>G2</sub> limit to 5 mA
- 2. Set  $V_{G1}$  to -5.0 V
- 3. Set  $V_{G2}$  to (VD/2) 2.7 V or (40 V/2) 2.7 V = 17.3 V
- 4. Set VD +40 V
- 5. Adjust  $V_{G1}$  more positive until  $I_{DQ}$  = 360 mA
- 6. Adjust VG2 to (VD/2) + VG1; (VG2 ~ +17.7 V Typical)
- 7. Apply RF signal

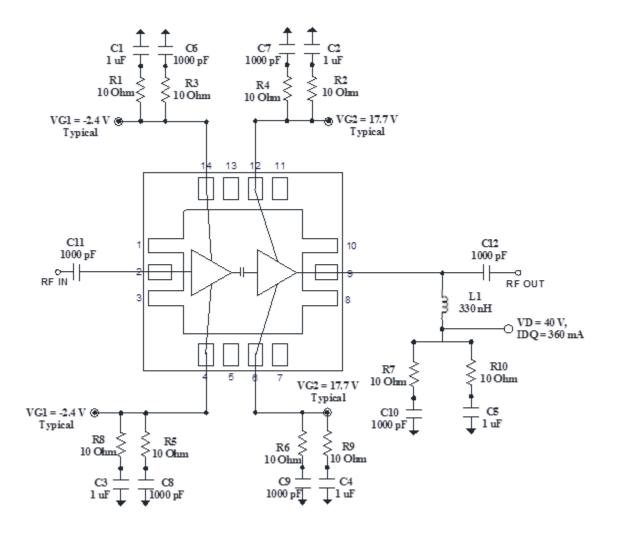

#### **Bias-Up Procedure**

- 1. Turn off RF signal 2. Reduce  $V_{G1}$  to -5.0 V. Ensure  $I_{DQ} \sim 0mA$ 3. Reduce  $V_{G2}$  to 0 V. 4. Set  $V_D$  to 0 V
- 5. Turn off V<sub>D</sub> supply
- 6. Turn off V<sub>G2</sub> supply
- 7. Turn off V<sub>G1</sub> supply



### **TGA2976-SM** 0.1 – 3.0 GHz 10 W GaN Power Amplifier

EVB Assembly Drawing (Coaxial Input DC Block and Coaxial Output Bias-T)



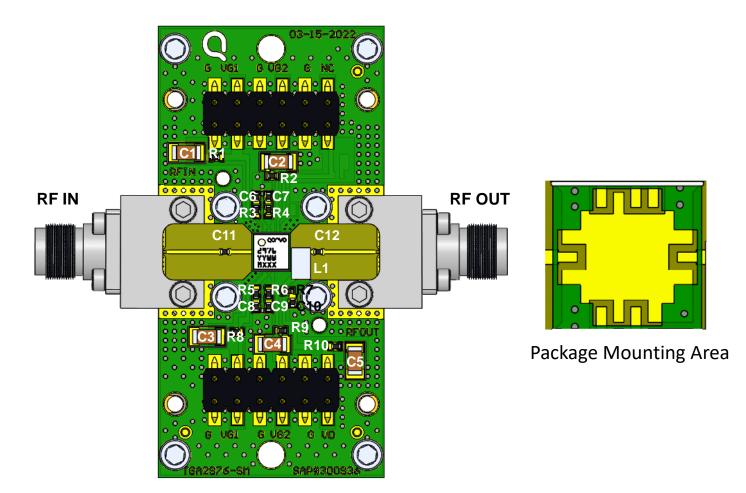

#### **Bill of Materials**

| Reference Des. | Value  | Description               | Manuf.  | Part Number |
|----------------|--------|---------------------------|---------|-------------|
| C1-C4          | 1uF    | Cap, 1206, 50V, 5%, X7R   | Various |             |
| C6-C9          | 1000pF | Cap, 0402, 100V, 10%, X7R | Various |             |
| C11            |        | DC Block                  | Various |             |
| R1-R6, R8-R9   | 10Ω    | Res, 0402, 5%             | Various |             |

### TGA2976-SM 0.1 – 3.0 GHz 10 W GaN Power Amplifier

Application Circuit (Option with Board–Level DC Blocks and Output Bias–T)




Notes:

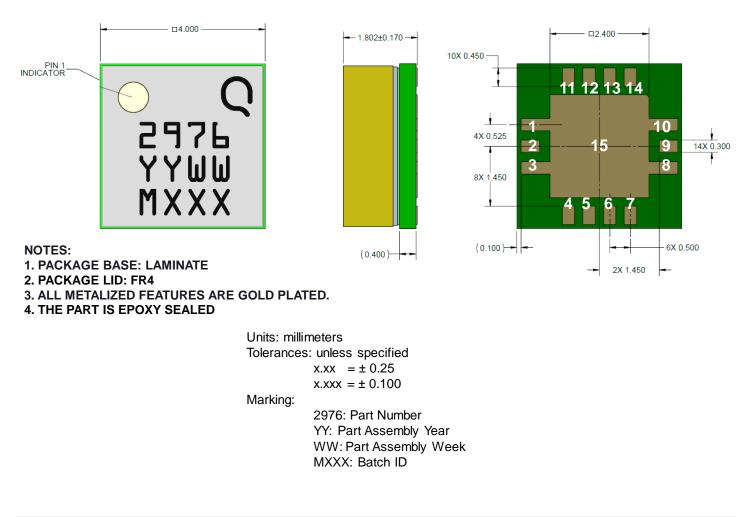
- 1. Performance of the DUT with surface mount DC blocks and bias tee components may be degraded relative to the coaxial option. These components should be optimized for the desired operational bandwidth.
- 2. V<sub>G1</sub> & V<sub>G2</sub> can be biased from either side (Top or Bottom.)
- 3. EVB is provided in this format when ordered.



# TGA2976-SM 0.1 – 3.0 GHz 10 W GaN Power Amplifier

#### EVB Assembly Drawing (On–Board DC Blocks and Output Bias–T Option)




#### EVB is provided in this format when ordered.

#### Bill of Materials for On-Board Bias-T

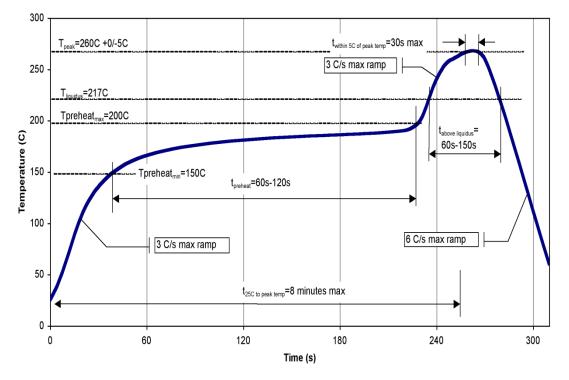
| Reference Des. | Value  | Description               | Manuf.  | Part Number |
|----------------|--------|---------------------------|---------|-------------|
| C1-C5          | 1uF    | Cap, 1206, 50V, 15%, X7R  | Various |             |
| C6-C12         | 1000pF | Cap, 0402, 100V, 10%, X7R | Various |             |
| L1             | 330nH  | Inductor, 1206, 850 mA    | Various |             |
| R1-R10         | 10Ω    | Res, 0402, 5%             | Various |             |

# TGA2976-SM 0.1 – 3.0 GHz 10 W GaN Power Amplifier

#### **Mechanical Drawing and Pad Description**



| Pad No.      | Symbol           | Description                                                                                    |
|--------------|------------------|------------------------------------------------------------------------------------------------|
| 1, 3, 8, 10  | GND              | Connected to ground paddle (pin 15); must be grounded on PCB.                                  |
| 2            | RF IN            | Input; matched to 50 $\Omega$ .                                                                |
| 4, 14        | GATE1            | Gate voltage 1; bias network is required; see recommended Application Information on page 14.  |
| 5, 7, 11, 13 | N/C              | No internal connection; should be connected to PCB ground.                                     |
| 6            | GATE2            | Gate voltage 2; bias network is required; see recommended Application Information on page 14.  |
| 9            | RF OUT/<br>DRAIN | Output; matched to 50 $\Omega$ .                                                               |
| 15           | GND              | Ground Paddle. Multiple vias should be employed to minimize inductance and thermal resistance. |


#### **Assembly Notes**

Compatible with lead-free soldering processes with 260°C peak reflow temperature.

This package is air-cavity and non-hermetic, and therefore cannot be subjected to aqueous washing. The use of no-clean solder to avoid washing after soldering is highly recommended.

Contact plating: Ni-Au.

Solder rework not recommended.



**Recommended Soldering Temperature Profile** 

#### **TGA2976-SM** 0.1–3.0 GHz 10 W GaN Power Amplifier

#### Handling Precautions

| Parameter                      | Rating | Standard               |       |                      |
|--------------------------------|--------|------------------------|-------|----------------------|
| ESD – Human Body Model (HBM)   | 1C     | ESDA/JEDEC JS-001-2012 |       | Caution!             |
| ESD-Charged Device Model (CDM) | C3     | JEDEC JESD22-C101F     | Les . | ESD-Sensitive Device |
| MSL-Moisture Sensitivity Level | 3      | IPC/JEDEC J-STD-020    |       |                      |

#### **RoHS Compliance**

This part is compliant with 2011/65/EU RoHS directive (Restrictions on the Use of Certain Hazardous Substances in Electrical and Electronic Equipment) as amended by Directive 2015/863/EU.

This product also has the following attributes:

- Lead Free
- Antimony Free
- TBBP-A (C<sub>15</sub>H<sub>12</sub>Br<sub>4</sub>0<sub>2</sub>) Free

#### **Contact Information**

For the latest specifications, additional product information, worldwide sales and distribution locations:

- Web: www.qorvo.com
- Tel: 1-844-890-8163
- Email: customer.support@qorvo.com

#### **Important Notice**

The information contained herein is believed to be reliable; however, Qorvo makes no warranties regarding the information contained herein and assumes no responsibility or liability whatsoever for the use of the information contained herein. All information contained herein is subject to change without notice. Customers should obtain and verify the latest relevant information before placing orders for Qorvo products. The information contained herein or any use of such information does not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other intellectual property rights, whether with regard to such information itself or anything described by such information. THIS INFORMATION DOES NOT CONSTITUTE A WARRANTY WITH RESPECT TO THE PRODUCTS DESCRIBED HEREIN, AND QORVO HEREBY DISCLAIMS ANY AND ALL WARRANTIES WITH RESPECT TO SUCH PRODUCTS WHETHER EXPRESS OR IMPLIED BY LAW, COURSE OF DEALING, COURSE OF PERFORMANCE, USAGE OF TRADE OR OTHERWISE, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

Without limiting the generality of the foregoing, Qorvo products are not warranted or authorized for use as critical components in medical, life-saving, or life-sustaining applications, or other applications where a failure would reasonably be expected to cause severe personal injury or death.

© 2023 Qorvo US, Inc. All rights reserved. This document is subject to copyright laws in various jurisdictions worldwide and may not be reproduced or distributed, in whole or in part, without the express written consent of Qorvo US, Inc.